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Abstract: This paper is concerned with a nonlinear dynamic equation with feedback control on time scales. Based
on the theory of calculus on time scales, by using a fixed point theorem of strict-set-contraction, some criteria
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feasibility and effectiveness of the results.
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1 Introduction
In the real world, lots of systems are continuously
disturbed by unpredictable forces which can result in
changes in parameters. Of practical interest is the
question of whether or not a system can withstand
those unpredictable disturbances which persist for a
finite period of time. In the language of control vari-
ables, we call the disturbance functions as control
variables. During the last decade, different types of
functional differential and difference equations with
feedback control have been extensively studied; see,
for example, [1-5] and the references therein.

However, in applications, there are many systems
whose developing processes are both continuous and
discrete. Hence, using the only differential equation
or difference equation can’t accurately describe the
law of their developments; see, for example, [6,7].
Therefore, there is a need to establish correspondent
dynamic models on new time scales.

The theory of calculus on time scales (see [8] and
references cited therein) was initiated by Stefan Hilger
[9] in order to unify continuous and discrete analy-
sis. Therefore, the study of dynamic equations on
time scales, which unifies differential, difference, h-
difference, and q-differences equations and more, has
received much attention; see [10-14].

The existence problem of periodic solutions is an
important topic in qualitative analysis of functional
dynamic equations. Up to now, there are only a few

results concerning periodic solutions of dynamic e-
quations with feedback control on time scales; see,
for example, [15,16]. In these papers, authors con-
sidered the existence of periodic solutions for dynam-
ic equations on time scales satisfying the condition
”there exists a ω > 0 such that t ± ω ∈ T, ∀t ∈ T.”
Under this condition all periodic time scales are un-
bounded above and below. However, there are many
time scales such as qZ = {qn : n ∈ Z} ∪ {0} and√
N = {

√
n : n ∈ N} which do not satisfy the condi-

tion. Adıvar and Raffoul introduced a new periodicity
concept on time scales which does not oblige the time
scale to be closed under the operation t±ω for a fixed
ω > 0. They defined a new periodicity concept with
the aid of shift operators δ± which are first defined in
[17] and then generalized in [18].

Recently, by using the cone theory techniques,
many researchers studied the existence and multiplic-
ity of positive periodic solutions in shifts δ± for some
nonlinear first-order functional dynamic equations on
time scales; see [19-22].

However, to the best of our knowledge, there are
few papers published on the existence and global at-
tractivity of positive periodic solutions in shifts δ± for
nonlinear dynamic systems with feedback control on
time scales.

Motivated by the above statements, in the present
paper, based on the theory of calculus on time scales,
we shall study a nonlinear first-order dynamic equa-
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tion with feedback control on time scales as follows:
x∆(t) = x(t)[r(t)− a(t)x(t)

−b(t)x(σ(t))− c(t)y(t)],
y∆(t) = −η(t)y(t) + g(t)x(t),

(1)

where t ∈ T, T ⊂ R be a periodic time scale in shift-
s δ± with period P ∈ [t0,∞)T and t0 ∈ T is non-
negative and fixed. r, a, b, c, η, g ∈ C(T, (0,∞)) are
∆-periodic functions in shifts δ± with period ω and
−η ∈ R+.

The initial condition of system (1) in the form

x(t0) = x0, y(t0) = y0, t0 ∈ T, x0 > 0, y0 > 0. (2)

The aim of this paper is, by using a fixed point
theorem of strict-set-contraction, to obtain sufficient
conditions for the existence of positive periodic solu-
tions in shifts δ± of system (1); and by using some dif-
ferential inequalities and constructing a suitable Lya-
punov functional, to obtain sufficient conditions for
the global attractivity of system (1).

For convenience, we introduce the notation

fu = sup
t∈[t0,δω+(t0)]T

f(t), f l = inf
t∈[t0,δω+(t0)]T

f(t),

where f is a positive and bounded function.
Throughout this paper, we assume that

(H1) Θ := er(t0, δ
ω
+(t0)) < 1;

(H2) min{rl, al, bl, cl, ηl, gl} > 0,
max{ru, au, bu, cu, ηu, gu} < ∞;

(H3) rl > auM1 + cuM2,
where M1 =

ru

bl
, M2 =

guM1

ηl
;

(H4) al − gu > 0;

(H5) ηl − cu > 0.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t}
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >

t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

For the basic theories of calculus on time scales,
see [8].

A function p : T → R is called regressive provid-
ed 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all re-
gressive and rd-continuous functions p : T → R will
be denoted by R = R(T,R). Define the set R+ =
R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized
exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕q = p+q+µpq, ⊖p = − p

1 + µp
, p⊖q = p⊕(⊖q).

Lemma 1. (see [8]) If p, q : T → R be two regressive
functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(vi) (ep(t, s))∆ = p(t)ep(t, s).

The following definitions, lemmas about the shift
operators and the new periodicity concept for time s-
cales which can be found in [20,23].

Let T∗ be a non-empty subset of the time scale
T and t0 ∈ T∗ be a fixed number, define operators
δ± : [t0,∞) × T∗ → T∗. The operators δ+ and δ−
associated with t0 ∈ T∗ (called the initial point) are
said to be forward and backward shift operators on
the set T∗, respectively. The variable s ∈ [t0,∞)T in
δ±(s, t) is called the shift size. The value δ+(s, t) and
δ−(s, t) in T∗ indicate s units translation of the term
t ∈ T∗ to the right and left, respectively. The sets

D± := {(s, t) ∈ [t0,∞)T × T∗ : δ∓(s, t) ∈ T∗}

are the domains of the shift operator δ±, respectively.
Hereafter, T∗ is the largest subset of the time scale T
such that the shift operators δ± : [t0,∞) × T∗ → T∗

exist.
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Definition 2. [23] (Periodicity in shifts δ±) Let T be a
time scale with the shift operators δ± associated with
the initial point t0 ∈ T∗. The time scale T is said to
be periodic in shifts δ± if there exists p ∈ (t0,∞)T∗

such that (p, t) ∈ D± for all t ∈ T∗. Furthermore, if

P := inf{p ∈ (t0,∞)T∗ : (p, t) ∈ δ±,∀t ∈ T∗} ̸= t0,

then P is called the period of the time scale T.

Definition 3. [23] (Periodic function in shifts δ±) Let
T be a time scale that is periodic in shifts δ± with
the period P . We say that a real-valued function f
defined on T∗ is periodic in shifts δ± if there exists ω ∈
[P,∞)T∗ such that (ω, t) ∈ D± and f(δω±(t)) = f(t)
for all t ∈ T∗, where δω± := δ±(ω, t). The smallest
number ω ∈ [P,∞)T∗ is called the period of f .

Definition 4. [23] (∆-periodic function in shifts δ±)
Let T be a time scale that is periodic in shifts δ± with
the period P . We say that a real-valued function f
defined on T∗ is ∆-periodic in shifts δ± if there exists
ω ∈ [P,∞)T∗ such that (ω, t) ∈ D± for all t ∈ T∗,
the shifts δω± are ∆-differentiable with rd-continuous
derivatives and f(δω±(t))δ

∆ω
± (t) = f(t) for all t ∈

T∗, where δω± := δ±(ω, t). The smallest number ω ∈
[P,∞)T∗ is called the period of f .

Lemma 5. [23] δω+(σ(t)) = σ(δω+(t)) and δω−(σ(t))
= σ(δω−(t)) for all t ∈ T∗.

Lemma 6. [20] Let T be a time scale that is peri-
odic in shifts δ± with the period P . Suppose that
the shifts δω± are ∆-differentiable on t ∈ T∗ where
ω ∈ [P,∞)T∗ and p ∈ R is ∆-periodic in shifts δ±
with the period ω. Then

(i) ep(δ
ω
±(t), δ

ω
±(t0)) = ep(t, t0) for t, t0 ∈ T∗;

(ii) ep(δ
ω
±(t), σ(δ

ω
±(s))) = ep(t, σ(s)) =

ep(t,s)
1+µ(t)p(t)

for t, s ∈ T∗.

Lemma 7. [23] Let T be a time scale that is peri-
odic in shifts δ± with the period P , and let f be
a ∆-periodic function in shifts δ± with the period
ω ∈ [P,∞)T∗ . Suppose that f ∈ Crd(T), then∫ t

t0

f(s)∆s =

∫ δω±(t)

δω±(t0)
f(s)∆s.

Lemma 8. [8] Suppose that r is regressive and f :
T → R is rd-continuous. Let t0 ∈ T, y0 ∈ R, then the
unique solution of the initial value problem

y∆ = r(t)y + f(t), y(t0) = y0

is given by

y(t) = er(t, t0)y0 +

∫ t

t0

er(t, σ(τ))f(τ)∆τ.

Lemma 9. (see [11]) Assume that a > 0, b > 0 and
−a ∈ R+. Then

y∆(t) ≥ (≤)b− ay(t), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≥ (≤)
b

a
[1+(

ay(t0)

b
−1)e(−a)(t, t0)], t ∈ [t0,∞)T.

Lemma 10. (see [11]) Assume that a > 0, b > 0.
Then

y∆(t) ≤ (≥)y(t)(b−ay(σ(t))), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≤ (≥)
b

a
[1+(

b

ay(t0)
−1)e⊖b(t, t0)], t ∈ [t0,∞)T.

3 Existence results

In this section, we shall study the existence of at least
one positive periodic solutions in shifts δ± of system
(1) via a fixed point theorem of strict-set-contraction.

Set

X = {x : x ∈ C(T,R), x(δω+(t)) = x(t)}

with the norm defined by |x|0 = sup
t∈[t0,δω+(t0)]T

|x(t)|,

then X is a Banach space.
By using Lemmas 1, 5 and 8, we can obtain the

following lemma.

Lemma 11. x(t) ∈ X is an ω-periodic solution in
shifts δ± of system (1) if and only if x(t) is an ω-
periodic solution in shifts δ± of

x(t) =

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s, (3)

where

G(t, s) =
er(t, σ(s))

1− er(t0, δω+(t0))
,

and

H(t, s) =
e−η(t, σ(s))

e−η(t0, δω+(t0))− 1
.
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Proof. If y(t) is an ω-periodic solution in shifts δ± of
the second equation of system (1). By using Lemma
8, for s ∈ [t, δω+(t)]T, we have

y(s) = e−η(s, t)y(t) +

∫ s

t
e−η(s, σ(θ))g(θ)x(θ)∆θ.

Let s = δω+(t) in the above equality, we have

y(δω+(t)) = e−η(δ
ω
+(t), t)y(t)

+

∫ δω+(t)

t
e−η(δ

ω
+(t), σ(θ))g(θ)x(θ)∆θ.

Noticing that y(δω+(t)) = y(t) and e−η(t, δ
ω
+(t)) =

e−η(t0, δ
ω
+(t0)), then

y(t) =

∫ δω+(t)

t
H(t, s)g(s)x(s)∆s := (Ψx)(t), (4)

where

H(t, s) =
e−η(t, σ(s))

e−η(t0, δω+(t0))− 1
.

Let y(t) be an ω-periodic solution in shifts δ± of
(4). By Lemmas 1 and 5, we have

y∆(t) = −η(t)y(t)

+H(σ(t), δω+(t))g(δ
ω
+(t))δ

∆ω
+ (t)x(δω+(t))

−H(σ(t), t)g(t)x(t)

= −η(t)y(t) + g(t)x(t).

Therefore, the existence problem of ω-periodic
solutions in shifts δ± of system (1) is equivalent to
that of the following equation

x∆(t) = x(t)[r(t)− a(t)x(t)− b(t)x(σ(t))

−c(t)

∫ δω+(t)

t
H(t, s)g(s)x(s)∆s]. (5)

Repeating the above process, it follows from (5)
that x(t) ∈ X is an ω-periodic solution in shifts δ± of
system (1) if and only if x(t) is an ω-periodic solution
in shifts δ± of

x(t) =

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s,

where

G(t, s) =
er(t, σ(s))

1− er(t0, δω+(t0))
.

This proof is complete.

It is easy to verify that the Green’s functions
G(t, s) and H(t, s) satisfy the property

0 <
Θ

1−Θ
≤ G(t, s) ≤ 1

1−Θ
, ∀s ∈ [t, δω+(t)]T, (6)

and

0 <
1

Γ− 1
≤ H(t, s) ≤ Γ

Γ− 1
.

where Θ := er(t0, δ
ω
+(t0)),Γ := e−η(t0, δ

ω
+(t0)). By

Lemma 6, we have

G(δω+(t), δ
ω
+(s)) = G(t, s),

H(δω+(t), δ
ω
+(s)) = H(t, s),

∀t ∈ T∗, s ∈ [t, δω+(t)]T. (7)

In order to obtain the existence of periodic solu-
tions in shifts δ± of system (1), we first make the fol-
lowing preparations:

Let E be a Banach space and K be a cone in E.
The semi-order induced by the cone K is denoted by
”≤”, that is, x ≤ y if and only if y − x ∈ K. In
addition, for a bounded subset A ⊂ E, let αE(A)
denote the (Kuratowski) measure of non-compactness
defined by

αE(A) = inf
{
d > 0 : there is a finite number of

subsets Ai ⊂ A such that A =
∪
i

Ai

and diam(Ai) ≤ d
}
,

where diam(Ai) denotes the diameter of the set Ai.
Let E,F be two Banach spaces and D ⊂ E, a

continuous and bounded map Φ : Ω̄ → F is called
k-set contractive if for any bounded set S ⊂ D we
have

αF (Φ(S)) ≤ kαE(S).

Φ is called strict-set-contractive if it is k-set-
contractive for some 0 ≤ k < 1.

Lemma 12. [24, 25] Let K be a cone of the real Ba-
nach space X and Kr,R = {x ∈ K|r ≤ x ≤ R}
with R > r > 0. Suppose that Φ : Kr,R → K is
strict-set-contractive such that one of the following t-
wo conditions is satisfied:

(i) Φx � x, ∀x ∈ K, ||x|| = r and
Φx � x, ∀x ∈ K, ||x|| = R.

(ii) Φx � x, ∀x ∈ K, ||x|| = r and
Φx � x, ∀x ∈ K, ||x|| = R.

Then Φ has at least one fixed point in Kr,R.
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Define K, a cone in X , by

K = {x ∈ X : x(t) ≥ Θ|x|0, t ∈ [t0, δ
ω
+(t0)]T},

(8)
and an operator Φ : K → X by

(Φx)(t)

=

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s. (9)

In the following, we shall give some lemmas con-
cerning K and Φ defined by (8) and (9), respectively.

Lemma 13. Assume that (H1) holds, then Φ : K →
K is well defined.

Proof. For any x ∈ K. In view of (4), for t ∈ T, we
obtain

(Ψx)(δω+(t))

=

∫ δω+(δω+(t))

δω+(t)
H(δω+(t), s)g(s)x(s)∆s

=

∫ δω+(t)

t
H(δω+(t), δ

ω
+(u))g(δ

ω
+(u))δ

∆ω
+ (u)

×x(δω+(u))∆u

=

∫ δω+(t)

t
H(t, u)g(u)x(u)∆u

= (Ψx)(t),

then

(Φx)(δω+(t))

=

∫ δω+(δω+(t))

δω+(t)
G(δω+(t), s)x(s)

[
a(s)x(s)

+b(s)x(σ(s)) + c(s)(Ψx)(s)

]
∆s

=

∫ δω+(t)

t
G(δω+(t), δ

ω
+(u))x(δ

ω
+(u))

×
[
a(δω+(u))δ

∆ω
+ (u)x(δω+(u))

+b(δω+(u))δ
∆ω
+ (u)x(σ(δω+(u)))

+c(δω+(u))δ
∆ω
+ (u)(Ψx)(δω+(u))

]
∆u

=

∫ δω+(t)

t
G(t, u)x(u)

[
a(u)x(u)

+b(u)x(σ(u)) + c(u)(Ψx)(u)

]
∆u

= (Φx)(t),

that is, (Φx)(δω+(t)) = (Φx)(t), t ∈ T. So Φx ∈ X .
Furthermore, for x ∈ K, t ∈ [t0, δ

ω
+(t0)]T, we

have

|Φx|0

≤ 1

1−Θ

∫ δω+(t0)

t0

x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s

and

(Φx)(t)

≥ Θ

1−Θ

∫ δω+(t0)

t0

x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s

= Θ
1

1−Θ

∫ δω+(t0)

t0

x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s

≥ Θ|Φx|0, (10)

that is, Φx ∈ K. The proof is complete.

Lemma 14. Assume that (H1)− (H2) hold, then Φ :
K

∩
Ω̄R → K is strict-set-contractive, where ΩR =

{x ∈ X : |x|0 < R}.

Proof. It is easy to see that Φ is continuous and
bounded. Now we prove that αX(Φ(S)) ≤ kαX(S)
for any bounded set S ⊂ Ω̄R and 0 < k < 1.
Let η = αX(S). Then, for any positive number
ε < η, there is a finite family of subsets {Si} satis-
fying S =

∪
i Si with diam(Si) ≤ η + ε. Therefore

|x− y|0 ≤ η + ε for any x, y ∈ Si. (11)

As S and Si are precompact in X , it follows that there
is a finite family of subsets {Sij} of Si such that Si =∪

j Sij and

|x− y|0 ≤ ε for any x, y ∈ Sij . (12)

In addition, for any x ∈ S and t ∈ [t0, δ
ω
+(t0)]T, we

have

|(Φx)(t)|

=

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s

≤ R2

1−Θ
Π := A,
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where Π :=
∫ δω+(t0)
t0

[
a(s)+b(s)+c(s)

∫ δω+(s)
s H(s, θ)

g(θ)∆θ

]
∆s. And

|(Φx)∆(t)|

=

∣∣∣∣r(t)(Φx)(t)− x(t)

[
a(t)x(t) + b(t)x(σ(t))

+c(t)

∫ δω+(t)

t
H(t, θ)g(θ)x(θ)∆θ

]∣∣∣∣
≤ ruA

+R2

(
au + bu + cu

Γ

Γ− 1

∫ δω+(t0)

t0

g(θ)∆θ

)
.

Applying the Arzela-Ascoli Theorem, we know
that Φ(S) is precompact in X . Then, there is a fi-
nite family of subsets {Sijk} of Sij such that Sij =∪

k Sijk and

|Φx− Φy|0 ≤ ε for any x, y ∈ Sijk. (13)

As ε is arbitrary small, it follows that

αX(Φ(S)) ≤ kαX(S).

Therefore, Φ is strict-set-contractive. The proof is
complete.

Theorem 15. Assume that (H1)−(H2) hold, then sys-
tem (1) has at least one positive ω-periodic solution in
shifts δ±.

Proof. Let R = 1−Θ
Θ3Π

and 0 < r < Θ(1−Θ)
Π , then we

have 0 < r < R. From Lemmas 13 and 14, we know
that Φ is strict-set-contractive on Kr,R. In view of (9),
we see that if there exists x∗ ∈ K such that Φx∗ = x∗,
then x∗ is one positive ω-periodic solution in shifts δ±
of system (1). Now, we shall prove that condition (ii)
of Lemma 12 holds.

First, we prove that Φx � x, ∀x ∈ K, |x|0 = r.
Otherwise, there exists x ∈ K, |x|0 = r such that
Φx ≥ x. So |x| > 0 and Φx− x ∈ K, which implies
that

(Φx)(t)−x(t) ≥ Θ|Φx−x|0 ≥ 0,∀t ∈ [t0, δ
ω
+(t0)]T.

(14)
Moreover, for t ∈ [t0, δ

ω
+(t0)]T, we have

(Φx)(t)

=

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s

≤ 1

1−Θ
r|x|0

∫ δω+(t0)

t0

[
a(s) + b(s)

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)∆θ

]
∆s

=
r

1−Θ
Π|x|0

< Θ|x|0. (15)

In view of (14) and (15), we have

|x|0 ≤ |Φx| < Θ|x|0 < |x|0,

which is a contradiction. Finally, we prove that Φx �
x, ∀x ∈ K, |x|0 = R also holds. For this case, we
only need to prove that

Φx ≮ x x ∈ K, |x|0 = R.

Suppose, for the sake of contradiction, that there ex-
ists x ∈ K and |x|0 = R such that Φx < x.
Thus x − Φx ∈ K \ {0}. Furthermore, for any
t ∈ [t0, δ

ω
+(t0)]T, we have

x(t)− (Φx)(t) ≥ Θ|x− Φx|0 > 0. (16)

In addition, for any t ∈ [t0, δ
ω
+(t0)]T, we find

(Φx)(t)

=

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s) + b(s)x(σ(s))

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)x(θ)∆θ

]
∆s

≥ Θ

1−Θ
Θ2|x|20

∫ δω+(t0)

t0

[
a(s) + b(s)

+c(s)

∫ δω+(s)

s
H(s, θ)g(θ)∆θ

]
∆s

=
Θ3

1−Θ
ΠR2

= R. (17)

From (16) and (17), we obtain

|x| > |Φx|0 ≥ R,

which is a contradiction. Therefore, conditions (i) and
(ii) hold. By Lemma 12, we see that Φ has at least one
nonzero fixed point in K. Therefore, system (1) has
at least one positive ω-periodic solution in shifts δ±.
The proof is complete.

4 Global attractivity

In this section, we shall study the global attractivity
of positive periodic solution in shifts δ± of system (1)
with initial condition (2). Applying Lemmas 9 and 10,
we can obtain the following lemma.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Meng Hu, Lili Wang

E-ISSN: 2224-2856 53 Volume 10, 2015



Lemma 16. Let (x(t), y(t)) be any positive periodic
solution in shifts δ± of system (1) with initial condition
(2). If (H3) hold, then system (1) is permanent, that is,
any positive periodic solution in shifts δ± (x(t), y(t))
of system (1) satisfies

m1 ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ M1, (18)

m2 ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤ M2, (19)

especially if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, then

m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,∞)T,

where

M1 =
ru

bl
, M2 =

guM1

ηl
,

m1 =
rl − auM1 − cuM2

bu
, m2 =

glm1

ηu
.

Lemma 17. Assume that (H3)− (H5) hold, then sys-
tem (1) is globally attractive.

Proof. Let z1(t) = (x1(t), y1(t)) and z2(t) = (x2(t),
y2(t)) be any two positive periodic solution in shift-
s δ± of system (1). It follows from (18)-(19) that
for sufficient small positive constant ε0 (0 < ε0 <
min{m1,m2}), there exists a T > 0 such that

m1 − ε0 < xi(t) < M1 + ε0,

m2 − ε0 < yi(t) < M2 + ε0, (20)

where t ∈ [T,+∞)T, i = 1, 2.
Since xi(t), i = 1, 2 are positive, bounded and

differentiable functions on T, then there exists a posi-
tive, bounded and differentiable function m(t), t ∈ T,
such that xi(t)(1+m(t)), i = 1, 2 are strictly increas-
ing on T. Then

∆

∆t
LT(xi(t)[1 +m(t)])

=
x∆i (t)[1 +m(t)] + xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]

=
x∆i (t)

xi(t)
+

xi(σ(t))m
∆(t)

xi(t)[1 +m(t)]
, i = 1, 2.

Here, we can choose a function m(t) such that |m∆(t)|
1+m(t)

is bounded on T, that is, there exist two positive con-
stants ζ > 0 and ξ > 0 such that 0 < ζ < |m∆(t)|

1+m(t) < ξ,
∀t ∈ T.

Set

V (t) = |e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+|y1(t)− y2(t)|),

where δ ≥ 0 is a constant (if µ(t) = 0, then δ = 0;
if µ(t) > 0, then δ > 0). It follows from the mean
value theorem of differential calculus on time scales
for t ∈ [T,+∞)T,

1

M1 + ε0
|x1(t)− x2(t)|

≤ |LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|

≤ 1

m1 − ε0
|x1(t)− x2(t)|. (21)

Let γ = min{(m1 − ε0)(a
l − gu), ηl − cu}. We

divide the proof into two cases.
Case I. If µ(t) > 0, set δ > max{(bu +

ξ
m1

)M1, γ} and 1− µ(t)δ < 0. Calculating the upper
right derivatives of V (t) along the solution of system
(1), it follows from (20), (21), (H4) and (H5) that for
t ∈ [T,+∞)T,

D+V ∆(t)

= |e−δ(t, T )|sgn(x1(t)− x2(t))

[
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

+
m∆(t)

1 +m(t)

(
x1(σ(t))

x1(t)
− x2(σ(t))

x2(t)

)]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|
= |e−δ(t, T )|sgn(x1(t)− x2(t))

×
[
− a(t)(x1(t)− x2(t))

−b(t)(x1(σ(t))− x2(σ(t)))

−c(t)(y1(t)− y2(t))]

+
m∆(t)

1 +m(t)

x1(σ(t))x2(t)− x1(t)x2(σ(t))

x1(t)x2(t)

]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))

×[−η(t)(y1(t)− y2(t)) + (x1(t)− x2(t))]

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|
= |e−δ(t, T )|sgn(x1(t)− x2(t))

×
[
− a(t)(x1(t)− x2(t))

−b(t)(x1(σ(t))− x2(σ(t)))

−c(t)(y1(t)− y2(t))]

+
m∆(t)

1 +m(t)

(
x1(σ(t))(x2(t)− x1(t))

x1(t)x2(t)

+
x1(t)(x1(σ(t))− x2(σ(t)))

x1(t)x2(t)

)]
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−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))

×[−η(t)(y1(t)− y2(t)) + (x1(t)− x2(t))]

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|
[
a(t)− g(t)

+
|m∆(t)|
1 +m(t)

x1(σ(t))

x1(t)x2(t)

]
|x1(t)− x2(t)|

−|e−δ(t, T )|
[

δ

M1 + ε0
− b(t)

− |m∆(t)|
1 +m(t)

1

x2(t)

]
|x1(σ(t))− x2(σ(t))|

−|e−δ(t, T )|(η(t)− c(t))|y1(t)− y2(t)|
−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|(al − gu)|x1(t)− x2(t)|
−|e−δ(t, T )|(ηl − cu)|y1(t)− y2(t)|

≤ −|e−δ(t, T )|((m1 − ε0)(a
l − gu)

×|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|)

≤ −γ|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
= −γV (t). (22)

By the comparison theorem and (22), we have

V (t) ≤ |e−γ(t, T )|V (T )

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

that is,

|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

then

1

M1 + ε0
|x1(t)− x2(t)|+ |y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
×|e(−γ)⊖(−δ)(t, T )|. (23)

Since 1 − µ(t)δ < 0 and 0 < γ < δ, then (−γ) ⊖
(−δ) < 0. It follows from (23) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

Case II. If µ(t) = 0, set δ = 0, then σ(t) =
t and |e−δ(t, T )| = 1. Calculating the upper right
derivatives of V (t) along the solution of system (1), it
follows from (20), (21), (H4) and (H5) that for t ∈
[T,+∞)T,

D+V ∆(t)

= sgn(x1(t)− x2(t))

(
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

)
+sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

= sgn(x1(t)− x2(t))[−(a(t) + b(t))

×(x1(t)− x2(t))− c(t)(y1(t)− y2(t))]

+sgn(y1(t)− y2(t))[−η(t)(y1(t)− y2(t))

+g(t)(x1(t)− x2(t))]

≤ −(a(t) + b(t)− g(t))|x1(t)− x2(t)|
−(η(t)− c(t))|y1(t)− y2(t)|

≤ −((m1 − ε0)(a
l + bl − gu)

×|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|)

≤ −γ̂(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
≤ −γV (t), (24)

where γ̂ = min{(m1 − ε0)(a
l + bl − gu), ηl − cu}.

By the comparison theorem and (24), we have

V (t) ≤ |e−γ(t, T )|V (T )

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

that is,

|LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|
+|y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

then

1

M1 + ε0
|x1(t)− x2(t)|+ |y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|. (25)

It follows from (25) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

From the above discussion, we can see that sys-
tem (1) is globally attractive. This completes the
proof.
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Together with Theorem 15 and Lemma 17, we
can obtain the following theorem.

Theorem 18. Assume that the conditions (H1)−(H5)
hold, then system (1) with initial condition (2) has a
unique globally attractive positive periodic solution in
shifts δ±.

5 Numerical examples

Example 1. Consider the following system on time
scale T = R:

x∆(t) = x(t)[0.8 + 0.2 sin π
2 t

−(0.045 + 0.005 sin π
2 t)x(t)

−x(σ(t))− 0.2y(t)],
y∆(t) = −(0.4 + 0.1 cos π

2 t)y(t)
+(0.015 + 0.005 sin π

2 t)x(t).

(26)

Let t0 = 0, then δω+(t) = t+2. By a direct calculation,
we can get

ru = 1, rl = 0.6, au = 0.05, al = 0.04,

bu = bl = 1, cu = cl = 0.2, ηu = 0.5,

ηl = 0.3, gu = 0.02, gl = 0.01,

er(0, 2) = 0.2019,

M1 = 1, M2 = 0.0667,

auM1 + cuM2 = 0.0633.

Obviously, er(t0, δω+(t0)) < 1, rl > auM1 + cuM2,
al − gu > 0, ηl − cu > 0, that is, the conditions
(H1)− (H5) hold. According to Theorem 18, system
(26) has a unique globally attractive positive periodic
solution in shifts δ±.

Example 2. Consider the following system on
time scale T = 2N0 :

x∆(t) = x(t)

[
1
5t −

2
tx(t)−

40
t x(σ(t))

− 1
20ty(t)

]
,

y∆(t) = − 1
3ty(t) +

1
5tx(t).

(27)

Let t0 = 1, then δω+(t) = 4t. By a direct calculation,
we can get

ru = 0.2, rl = 0.05, au = 2, al = 0.5,

bu = 40, bl = 10,

cu = 0.0500, cl = 0.0125, ηu = 0.0125,

ηl = 0.0833, gu = 0.2, gl = 0.05,

er(1, 4) = 0.6818,

M1 = 0.02, M2 = 0.0480,

auM1 + cuM2 = 0.0424.

Obviously, er(t0, δω+(t0)) < 1, rl > auM1 + cuM2,
al − gu > 0, ηl − cu > 0, that is, the conditions
(H1)− (H5) hold. According to Theorem 18, system
(27) has a unique globally attractive positive periodic
solution in shifts δ±.

6 Conclusion

This paper studied a nonlinear dynamic equation with
feedback control on time scales. Based on the theory
of calculus on time scales, by using a fixed point the-
orem of strict-set-contraction, some criteria are estab-
lished for the existence of positive periodic solutions
in shifts δ± of the system; then, by using some dif-
ferential inequalities and constructing a suitable Lya-
punov functional, sufficient conditions which guaran-
tee the global attractivity of the system are obtained.

The results obtained in this paper can be applied
to systems on more general time scales, not only time
scales are unbounded above and below. So the field of
applications of one dynamic system is widened. Be-
sides, the methods used in this paper can be applied to
study many other dynamic systems.
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